Direct recordings in human cortex reveal the dynamics of gamma-band [50-150 Hz] activity during pursuit eye movement control
نویسندگان
چکیده
The time course of neural activity in human brain regions involved in mediating pursuit eye movements is unclear. To address this question, we recorded intracerebral electroencephalography activity in eight epileptic patients while they performed a pursuit task that dissociates reactive, predictive and inhibited pursuits. A sustained gamma band (50-150 Hz) activity corresponding to pursuit maintenance was observed in the pursuit (and not saccade) area of the frontal eye field (FEF), in the ventral intraparietal sulcus (VIPS) and in occipital areas. The latency of gamma increase was found to precede target onset in FEF and VIPS, suggesting that those areas could also be involved during pursuit preparation/initiation. During pursuit inhibition, a sustained gamma band response was observed within prefrontal areas (pre-supplementary-motor-area, dorso-lateral prefrontal and frontopolar cortex). This study describes for the first time the dynamics of the neural activity in four areas of the pursuit system, not previously available in humans. These findings provide novel timing constraints to current models of the human pursuit system and establish the relevance of direct recordings to precisely relate eye movement behavior with neural activity in humans.
منابع مشابه
Neuronal synchronization in human posterior parietal cortex during reach planning.
Although single-unit studies in monkeys have identified effector-related regions in the posterior parietal cortex (PPC) during saccade and reach planning, the degree of effector specificity of corresponding human regions, as established by recordings of the blood oxygen level-dependent signal, is still under debate. Here, we addressed this issue from a different perspective, by studying the neu...
متن کاملKetamine-Induced Oscillations in the Motor Circuit of the Rat Basal Ganglia
Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical st...
متن کاملOptogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex.
Transient gamma-band (40-80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrati...
متن کاملMovement related activity in the high gamma range of the human EEG
Electrocorticographic (ECoG) recordings obtained using intracranially implanted electrodes in epilepsy patients indicate that high gamma band (HGB) activity of sensorimotor cortex is focally increased during voluntary movement. These movement related HGB modulations may play an important role in sensorimotor cortex function. It is however currently not clear to what extent this type of neural a...
متن کاملFEF-Controlled Alpha Delay Activity Precedes Stimulus-Induced Gamma-Band Activity in Visual Cortex.
Recent findings in the visual system of nonhuman primates have demonstrated an important role of gamma-band activity (40-100 Hz) in the feedforward flow of sensory information, whereas feedback control appears to be established dynamically by oscillations in the alpha (8-13 Hz) and beta (13-18 Hz) bands (van Kerkoerle et al., 2014; Bastos et al., 2015). It is not clear, however, how alpha oscil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 63 1 شماره
صفحات -
تاریخ انتشار 2012